

Continuity

Basic Level

If the function $f(x) = \begin{cases} 5x - 4 & \text{, if } 0 < x \le 1 \\ 4x^2 + 3bx, \text{ if } 1 < x < 2 \end{cases}$ is continuous at every point of its domain, then the value of *b* is 1. [Rajasthan PET 2000] (a) -1 (c) 1 (d) None of these If $f(x) = \begin{cases} \frac{\log(1+2ax) - \log(1-bx)}{x}, & x \neq 0\\ k & x = 0 \end{cases}$ is continuous at x = 0, then k equals 2. [Rajasthan PET 1998] (b) 2a - b(c) b - 2a(a) 2a + b(d) b+aIf $f(x) = \begin{cases} x & \text{, when } 0 \le x < 1 \\ k - 2x & \text{, when } 1 \le x \le 2 \end{cases}$ is continuous at x = 1, then value of *k* is 3. [Rajasthan PET 1993] (b) -1 (a) 1 (c) 3 (d) 2 If $f(x) = \begin{cases} x , x < 0 \\ 1 , x = 0 \\ x^2 , x > 0 \end{cases}$, then true statement is 4. [Rajasthan PET 1992; DCE 2001] (b) $\lim_{x \to 0} f(x) = 0$ (c) f(x) is continuous at x = 0 (d) $\lim_{x \to 0} f(x)$ does not exist (a) $\lim_{x \to 0} f(x) = 1$ If $f(x) = \frac{x-a}{\sqrt{x}-\sqrt{a}}$ is continuous at x = a, then f(a) equals 5٠ (a) \sqrt{a} (b) 2√*a* (c) a (d) 2a If f(x) = |x - b|, then function 6. [Roorkee 1984] (a) Is continuous $\forall x$ (b) Is continuous at $x = \infty$ (c) Is discontinuous at x = b (d) None of these If $f(x) = \begin{cases} \frac{x^4 - 16}{x - 2}, & \text{when } x \neq 2\\ 16, & \text{when } x = 2 \end{cases}$ then 7. (a) f(x) is continuous at x = 2(b) f(x) is discontinuous at x = 2(c) $\lim_{x \to 2} f(x) = 16$ (d) None of these In the following discontinuous function is 8. [Rajasthan PET 1984] (c) $\frac{1}{1-2r}$ (d) $\frac{1}{1+r^2}$ (b) x^2 (a) $\sin x$ If $f(x) = \begin{cases} x^2 & \text{, when } x \le 1 \\ x + 5 & \text{when } x > 1 \end{cases}$ then 9. [MP PET 1996]

CLICK HERE

(a) f(x) is continuous at x = 1(b) f(x) is discontinuous at x = 1(c) $\lim_{x \to 1} f(x) = 1$ (d) None of these If $f(x) = \begin{cases} 1+x, \text{ when } x \le 2\\ 5-x, \text{ when } x > 2 \end{cases}$ then 10. (a) f(x) is continuous at x=2 (b) f(x) is discontinuous at x=2(c) f(x) is discontinuous at (d) None of these x = 0The point of discontinuity of the function $f(x) = \frac{1 + \cos 5x}{1 - \cos 4x}$ is 11. (a) x = 0(b) $x = \pi$ (c) $x = \pi/2$ (d) All of these Function $f(x) \neq x$ is [Rajasthan PET 1992] 12. (c) Continuous (a) Discontinuous at x = 0(b) Discontinuous at x = 1at all points (d) Discontinuous at all points If $f(x) = \begin{cases} x^2 & \text{, when } x \neq 1 \\ 2 & \text{, when } x = 1 \end{cases}$ then (a) $\lim_{x \to 1} f(x) = 2$ (b) f(x) is continuous at x = 1 (c) 13. (a) $\lim_{x \to 1} f(x) = 2$ f(x) is discontinuous at x None of these = 1 (d) Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x} , x \neq 0 \\ k , x = 0 \end{cases}$. If f(x) is continuous at x = 0, then k = 014. (a) $\frac{\pi}{5}$ (b) $\frac{5}{-}$ (c) 1 (d) 0 Function f(x) = x - |x| is 15. (a) Discontinuous at x = 0Discontinuous at x = 1(c) Continuous (b) at all points (d) Discontinuous at all points 16. Function f(x) = x + |x| is (a) Continuous at all points (b) Discontinuous at x = 0(c) Discontinuous at x = 1(d) Discontinuous at all points If f(x) is continuous function and g(x) is discontinuous function, then correct statement is 17. (a) f(x) + g(x) is continuous function (b) f(x) - g(x) is continuous function (c) f(x) + g(x) is discontinuous function (d) f(x).g(x) is discontinuous function Function $f(x) = \begin{cases} -1 & \text{, when } x < -1 \\ -x & \text{, when } -1 \le x \le 1 \end{cases}$ is continuous 18. [Rajasthan PET 1986] 1. when x > 1(a) Only at x = 1(b) Only at x = -1 (c) At both x = 1 and x = -1(d) Neither at x=1 nor at x = -1Advance Level Let $f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$ the value which should be assigned to f at x = 0 so that it is continuous 19. everywhere is [MP PET 1992] (a) $\frac{1}{2}$ (b) -2 (d) 1 The value of f(0) so that the function $f(x) = \frac{\sqrt{1+x} - (1+x)^{1/3}}{x}$ becomes continuous is equal to 20.

Functions, Limits, Continuity and

Get More Learning Materials Here :

🕀 www.studentbro.in

110 Functions, Limits, Continuity and

110	Functions, Emilis, co	internately and						
	(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c)	2	(d)	$\frac{1}{3}$		
21.	If $f(x) = \begin{cases} \frac{ x-a }{ x-a } & \text{when } x \neq 1 \\ 1 & \text{when } x \neq 1 \end{cases}$	$a^{\pm a}$ then = a					[A]	[CBSE 1983]
	(a) $f(x)$ is continuous a		f(x) is discontinuous at x=a (c) lim j	f(x) = 1	(d)	None of
these					$x \rightarrow a$			
22.	If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}$, when 0 , when	$ \begin{array}{l} x \neq 0 \\ x = 0 \end{array} $ then					[BIT	Rnchi 1999]
	(a) $\lim_{x \to 0^+} f(x) = 1$	(b) $\lim_{x \to 0^{-}} f(x) = 1$	(c)	f(x) is continuous at $x = 0$	(d) 1	None	of thes	e
23.		$\frac{\cos x}{x-2x}$, when $x \neq \frac{\pi}{2}$ be continu- , when $x = \frac{\pi}{2}$	ous a	t $x = \frac{\pi}{2}$, then $k=$				
	(a) 3	(b) 6	(c)	12	(d) I	None	of thes	e
24.	A function $f(x)$ is define	ed in [0,1] as follows $f(x) = \begin{cases} \\ \\ \\ \end{cases}$	x, it 1 - x, it	f x is rational f x is irrational , then correct	state	ment	s	
	(a) $f(x)$ is continuous a			(b)				is at $x = 1$
	(c) $f(x)$ is continuous a	$t x = \frac{1}{2}$		(d)	f(x)	is	6 6	everywhere
disco	ontinuous	2						
25.	If $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0\\ 1, & x = 0 \end{cases}$, then at $x = 0, f(x)$ is		[BITS (Mesra) 1998]				
	(a) Continuous			Right continuous	(d) I	None	of thes	e
26.	The function $f(x) = \begin{cases} x + \frac{1}{2} \\ 3 \end{cases}$	2 , $1 \le x \le 2$ 4 , $x = 2$ is continuous x-2 , $x > 2$						[DCE 1999]
	-	(b) $x \le 2$		$1 \le x$	(d) I	None	of thes	e
27.	If $f(x) = \begin{cases} 1, \text{ when} \\ 2\sin\frac{2x}{9}, \text{ when} \end{cases}$	$0 < x \le \frac{3\pi}{4}$ then $\frac{3\pi}{4} < x < \pi$						[IIT 1991]
	(a) $f(x)$ is continuous a	at $x = 0$		(b)	f(x)	is con	tinuoı	is at $x = \pi$
	(c) $f(x)$ is continuous a	at $x = \frac{3\pi}{4}$		(d)	f(x)	is d	liscon	tinuous at
$x = \frac{2}{3}$		+						
28.	If $f(x) = \begin{cases} 1/2 - x , & 0 < x \\ 0 , & x = 0 \\ 1/2 , & x = 1 \\ 3/2 - x , & 1/2 < x \\ 1 , & x = 1 \end{cases}$	< 1/2) /2 , then false statement is : < 1	S	[Rajasthan PET 1	984 (S	Simila	to MF	9 PET 1996)]
	(a) $f(x)$ is discontinuou	is at $x = 0$		(b)	f(x)	is con	tinuou	as at $x = \frac{1}{2}$
	(c) $f(x)$ is discontinuou	is at $x = 1$		(d)				is at $x = \frac{1}{4}$

Regional www.studentbro.in

Get More Learning Materials Here : 💻

Regional www.studentbro.in

26.
$$f(x) = \frac{\sqrt{1-\mu_x}}{x} - \sqrt{1-\mu_x}}, r | \le x < 0 = \frac{2x+1}{x-2}, 0 \le x \le 1$$
 is continuous in the interval [-1.1] then *p* equals
(a) -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1
30. The function $f(x) = \begin{bmatrix} x^{\frac{1}{2}} & 0 \le x \le 1 \\ a & 1 \le x < \sqrt{2} \end{bmatrix}$ is continuous for $0 \le x < x$, then the most suitable values of *a* and *b*
 $[2b^2 - 4b/x^2, \sqrt{2} \le x < \infty]$
are **[Fir Eanchi 1984]**
(a) $a = 1, b = -1$ (b) $a = -1, b = 1 + \sqrt{2}$ (c) $a = -1, b = 1$ (d) None of these
31. Let $f(x) = \begin{bmatrix} x^{\frac{1}{2}} + x^2 - 16x + 20, \\ (x - 2)^2, \\ (x -$

Get More Learning Materials Here :

112 Functions, Limits, Continuity and

41.	Function $f(x) = \left(1 + \frac{x}{a}\right)$	$\int_{0}^{1/x}$ is continu	Nous at $x = 0$, if $f(0)$	equals						
	(a) e^{a}	(b) e^{-a}	((c) 0		(d) $e^{1/a}$				
42.	Let [.] denote the gr	eatest integer	function and $f(x) = $	$[\tan^2 x]$. Then			[11]	Г 199	93]	
	(a) $\lim_{x \to 0} f(x)$ does not	t exist		(b)		f(x) is continuous at $x = 0$				
	(c) $f(x)$ is not differ	entiable at $x =$	(d) $f'(0) = 1$							
43.	. The function $f(x) = \begin{cases} x + a\sqrt{2} \sin x & 0 \le x < \pi/4 \\ 2x \cot x + b & \pi/4 \le x \le \pi/2 \end{cases}$ is continuous for $0 \le x \le \pi$ then <i>a</i> , <i>b</i> are $a \cos 2x - b \sin x = \pi/2 < x \le \pi$									
	(a) $\frac{\pi}{6}, \frac{\pi}{12}$	(b) $\frac{\pi}{3}, \frac{\pi}{6}$	((c) $\frac{\pi}{6}, -\frac{\pi}{12}$		(d) None of the	se			
44.	Let $f: R \to R$ be any	function. Defi	ne $g: R \to R$ by $g(x)$	= f(x) for all	x, Then g is		[11]	200	00]	
	(a) Onto if <i>f</i> is onto		((b) One-one if	f is one-one					
diffe	(c) Continuous if <i>f</i> i erentiable	s continuous		(d)		Differentiable	if	f	is	
			**	*						

Assignment (Basic & Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	a	с	b	b	a,b	b	с	b	a	d	с	с	a	с	a	с	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	b	с	с	с	с	b	b	с	a	b	d	b	b	b	d	с	с	b
41	42	43	44																
d	b	с	с																

Get More Learning Materials Here : 📕

